Graph Theory

B. Math. II

Semestral Examination

Instructions: All questions carry ten marks. All graphs are assumed to be simple. Results proved in the course can be used without proof.

- 1. Prove that a graph G with n vertices and $e \leq n-1$ edges has n-e connected components if and only if it contains no cycle.
- 2. Prove that every simple planar graph with at least four vertices have at least four vertices of degree less than 6.
- 3. Let $n \ge 3$ be a natural number and let S be a subset of n points in the plane such that the distance between any two distinct points of S is at least one. Then, prove that there are at most 3n 6 pairs u, v in S such that d(u, v) = 1.
- 4. Which of the following can be the characteristic polynomial of a tree? Justify your answer.
 - (a) $X^9 8X^7$
 - (b) $X^{10} 9X^7 + 19X^5$
 - (c) $X^{13} 27X^{11} + 14X^5 + X$